凯发环球角

联系我们

风力发电综合防雷解决方案

来源: 2016/7/19 11:44:50      点击:
风力发电综合防雷解决方案内容摘要:
... ...
二、 风力发电直击雷防护
    该风机主体高度约80米,叶片长度约40米,即风机最高点高度约为120米,且大多数风力发电机位于空旷地带,较孤立。风机的高度加上所处特殊的环境,造成风力发电机在雷雨天气时极易遭受直击雷。
    国际电工委员会对防雷过电压保护的防护区域划分为:LPZ0 区(LPZ0A、LPZ0B),LPZ1 区,LPZ2 区。  
    在金属塔架接地良好的情况下,叶片、机舱的外部(包括机舱)、塔架外部(包括塔架)、箱式变压器应属于LPZ0 区,这些部位是遭受直击雷(绕雷)或不遭受直击雷但电磁场没有衰减的部位。机舱内、塔架内的设备应属于 LPZ1 区,这其中包括电缆、发电机、齿轮箱等。塔架内电气柜中的设备,特别是屏蔽较好的弱电部分应属于 LPZ2。
    对与现有风力发电机的 LPZ0 区防雷过电压保护装置进行分析后,在 LPZ0 区内,直击雷的防护在没有技术突破的前提下仍然沿用传统的富兰克林避雷方法:利用自身的高度使雷云下的电场发生畸变,从而将雷电吸引,以自身代替被保护物受雷击,以达到保护避雷的目。这就要求风机的叶片的制作及其材料提出很高的要求,即叶片必须能够承受足够大的电流,并且在叶片上添加导电性能良好、自身重量轻的类似于碳纤维的材料,用单独的线缆将叶片与塔身连接在一起,为雷电流泄放提供一个良好的通道。
    机舱主机架除了与叶片相连,还连接机舱顶上避雷棒(笔者在给天津海事局灯塔做防雷工程时,在烟台北长山岛上近距观察风力发电机看到的),与叶片位于相反的方向,估计该避雷棒用作为保护风速计和风标免受雷击。
    根据风力发电机的使用性质及其重要性,参照《建筑物防雷设计规范》50057-94(2000版)关于建筑物的防雷分类,可以将风力发电机划分为二类防雷建筑。二类防雷建筑对应的滚球半径为45米,根据电气—几何模型
    hr=10•I0.65
    hr——雷闪的最后闪络距离(击距),即滚球半径
    I——与hr对应的得到保护的最小雷电流幅值(KA),即比该电流小的雷电流可能击到被保护的空间。
    当hr=45米时,I=10.1KA,即在选用滚球半径为45米时,当雷电流大于10.1KA时,雷电闪击就会击在接闪器上;当雷电流小于10.1KA时,会发生绕机,即雷电可能击在被保护物上,而不是接闪器上;如果被保护物自身的高度超过45米时,还会发生侧击,即发生雷电时,闪击可能击在塔身上(塔身高约80米)。根据莫斯科灯塔观测到的雷击,有多次时击在灯塔下方的,即发生了侧击。同时,较大的高度使得上行雷的概率增大。由于风力发电机塔身较高,使得积雨云下端与叶片的距离接近,大气电场强度突增,导致发生局部的空气击穿而产生向上发展的流光,终至出现上行先导。
    关于风力发电机的雷击概率,可以参照《高层建筑电气设计手册》提供的一个估算的经验公式。它是根据美国、波兰、日本、瑞典对特高层建筑的观察记录,得出的经验公式:N=3×10-5H2
    H的单位为m,适用于1KL=10.由此可以估算出,在1KL=30 的地区(上海接近此数),100m高的建筑,每年大约遭受1次雷击。从这个公式中可以揭示出一个规律,即高层建筑雷击概率与其高度的平方成正比。
    以上直击雷的防护是建立在一个有良好接地体的基础上的,参照《建筑物防雷设计规范》GB50057-94 及《微波站防雷与接地设计规范》YD2011-93 相关条款,风力发电机防雷接地电阻不能小于5Ω。
... ...
如有需要请与我们联系,工程项目负责人:常先生 137 2865 0578
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?e926529819a30f1e527282f563736c78"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();